The Crystal and Molecular Structure of N-(4-Bromobenzyl)isoquinolinium 4-Dithiocarboxylate. An Adduct of N-(4-Bromobenzyl)isoquinolinium Bromide and Carbon Disulphide

BY B. W. MATTHEWS, P. M. COLMAN,* J. O. SELZER, L. H. WEAVER AND J. A. DUNCAN†

Institute of Molecular Biology and Departments of Physics and Chemistry, University of Oregon, Eugene, Oregon 97403, U.S.A.

(Received 21 May 1973; accepted 30 July 1973)

The crystal and molecular structure of N-(4-bromobenzyl)isoquinolinium 4-dithiocarboxylate, a novel adduct of N-(4-bromobenzyl)isoquinolinium bromide with carbon disulphide, has been determined. The crystals are triclinic, space group $P\overline{1}$, with two molecules of the adduct, and two dimethylformamide molecules of crystallization per unit cell. Cell dimensions are a=8.435 (17), b=10.880 (21), c=12.870 (25) Å, $\alpha=113.18$ (8), $\beta=111.44$ (8), $\gamma=83.33$ (9). The structure was determined by Patterson and heavy atom methods, and refined to a residual of 8.5% for reflections with $I>2\sigma(I)$. The dithiocarboxylate group, which is planar, is inclined at 71.6° to the isoquinolinium ring system, and has carbon-sulphur bond lengths of 1.693 (10) Å and 1.649 (10) Å. The dimethylformamide molecule is also planar. The dihedral angle between the isoquinolinium and bromobenzyl ring planes is 108.5°.

Introduction

The reaction of N-benzylisoquinolinium bromides (I) with carbon disulphide in strongly basic aqueous dioxane yields adducts which are 3-phenylthiazolo-[2,3-*a*]isoquinolinium-2-thione betaines (II) (Kröhnke & Steuernagel, 1961; Baldwin, McDaniel, Newton & Paul, 1966; Newton, McDaniel, Baldwin & Paul, 1967).

In studies directed toward understanding the mechanism of the cycloaddition process Baldwin & Duncan (1971a, b) subjected a series of N-benzylisoquinolinium salts to the above mentioned reaction conditions and isolated a number of representatives of a new class of adduct, not previously examined.

Initial studies of the new adducts by mass spectrometric and by spectral techniques did not lead to an unequivocal structure determination, and it was therefore decided to resort to an X-ray analysis. The product chosen for the X-ray structure determination was an adduct from N-(4-bromobenzyl)isoquinolinium bromide (I, X = 4'-Br) and was found to be an Nbenzylisoquinolinium 4-dithiocarboxylate. The schematic formula of the new adduct, hereafter referred to as NBID, and the numbering used in this study, are shown in Fig. 1.

Experimental

Crystals of NBID, grown from N,N-dimethylformamide-acetonitrile were deep-red laths of variable habit. Weissenberg and precession photographs revealed no symmetry axes, and the triclinic unit cell with parameters given in Table 1 was therefore adopted. Using the assumed molecular formula and the observed density (Table 1), the number of molecules per unit cell was calculated to be $2 \cdot 5$, which was clearly impossible. Since the chemical data available at the time ruled against a substantial error in the molecular weight, the cause of this discrepancy was not obvious, and in fact it was subsequently shown that the unit cell also contained two molecules of dimethylformamide (DMF), the crystallizing solvent.

Table 1. Crystallographic data

	Unit-cell dim	iensions $a =$	8·435 (17) Å	
		b = 1	0.880 (21) 2.870 (25)	
		$\alpha = 11$	3·18 (8)°	
		$\beta = 11$	1.44 (8)	
		$\gamma = 8$	3.33 (9)	
		$V_c = 10$	10·1 A ³	
	Space group	P 1		
С	NBID and two	dimethylformamide	molecules per	

Two NBID and two dimethylformamide molecules per cell Density (calculated) 1.471 g cm⁻³ Density (observed) 1.469 (5) g cm⁻³

Density (00	serveu)	1	407	(\mathcal{I})	g cin
Absorption	coefficient	(Mo)	Κα) 2	23.5	cm~

The lattice constants were determined by centering 32 reflections and subsequent least-squares refinement. In this and in all tables the standard deviation in the last place is shown in parentheses.

 ^{*} Present address: Max-Planck-Institut für Biochemie,
 8033 Martinsried bei München, Munich, Germany (BRD).
 † Present address: Department of Chemistry, University of

Notre Dame, Notre Dame, Indiana 46556, U.S.A.

An initial set of data including the levels 0kl through 4kl was collected by eye-estimation of Weissenberg photographs taken using Cu $K\alpha$ radiation. This sufficed for the initial structure determination, but was subsequently discarded in favor of a more accurate set of data collected with a card-controlled Enraf-Nonius three-circle diffractometer operated in a θ -2 θ peak scan mode.

Filtered Mo $K\alpha$ radiation ($\lambda = 0.7107$ Å) was used, data being collected to $\sin \theta / \lambda = 0.66$ Å⁻¹, *i.e.*, equivalent to the observable limit for Cu K α radiation. Total counting time per reflection was about 50 s. Of a possible 4042 reflections, 2683 were observed to have $I > 2\sigma(I)$. The crystal used for data collection measured $0.15 \times 0.30 \times 0.6$ mm, the long dimension being along the φ axis. No correction was made for absorption.

Structure determination

It was not known at the outset whether the space group was P1 or $P\overline{1}$. Rather than attempt to decide between the two alternatives with statistical methods, which might have been unreliable in the presence of the heavy bromine atoms (Sim, 1958), our approach was to calculate the Patterson function and to look for the bromine-bromine, sulphur-sulphur and brominesulphur peaks. If an internally consistent interpretation could be made of all the major Patterson peaks in terms of the vectors generated by this set of three atoms, then not only would their coordinates be revealed, but also the space-group ambiguity be resolved. This in fact proved to be the case. Inspection of the Patterson function calculated using the eyeestimated intensities suggested that the space group

Table 2. Fractional coordinates $\times 10^4$

The thermal parameters, $B_{ij} \times 10^4$, are the coefficient in the expression exp $[-\sum B_{ij}h_ih_j]$.

	x	у	Ζ	B_{11}	B22	B ₃₃	<i>B</i> ₂₃	B ₁₃	<i>B</i> ₁₂
Br	1906 (2)	1335 (1)	1024 (1)	284 (2)	149 (1)	75 (1)	44 (2)	76 (2)	- 57 (3)
S(1)	-1398(3)	4811 (3)	7059 (2)	98 (3)	138 (3)	124 (2)	100 (4)	88 (5)	8 (5)
S(2)	-0302(3)	2775 (3)	8198 (3)	148 (4)	153 (3)	160 (3)	149 (5)	145 (6)	-26(6)
N(1)	4173 (7)	3168 (6)	7165 (5)	91 (10)	113 (7)	64 (5)	55 (10)	83 (12)	34 (14)
$\mathbf{C}(1)$	2777 (11)	1573 (8)	2677 (7)	169 (15)	89 (8)	69 (6)	48 (12)	118 (17)	52 (18)
C(2)	2225 (12)	0714 (8)	3038 (8)	175 (16)	88 (9)	87 (8)	-6(13)	85 (19)	-67 (19)
C(3)	2873 (11)	0873 (8)	4226 (8)	168 (16)	86 (8)	100 (8)	44 (13)	144 (19)	40 (19)
C(4)	4090 (10)	1899 (8)	5069 (7)	111 (13)	101 (9)	79 (7)	49 (13)	106 (16)	55 (17)
C(5)	4575 (11)	2723 (9)	4668 (8)	121 (14)	117 (10)	89 (8)	52 (14)	44 (17)	- 36 (19)
C(6)	3928 (11)	2593 (8)	3484 (8)	147 (15)	103 (9)	93 (8)	64 (14)	68 (18)	-35 (19)
C(7)	4863 (10)	2002 (9)	6365 (8)	124 (14)	123 (10)	79 (7)	61 (14)	97 (17)	97 (19)
C(8)	2525 (9)	3059 (8)	7108 (6)	85 (11)	105 (9)	58 (6)	37 (12)	56 (14)	6 (15)
C(9)	1833 (9)	4079 (8)	7818 (6)	89 (11)	101 (8)	61 (6)	41 (11)	64 (14)	-6 (15)
C(10)	2832 (9)	5257 (7)	8642 (6)	126 (13)	83 (7)	50 (5)	23 (10)	75 (14)	0 (16)
C(11)	4516 (9)	5331 (7)	8687 (7)	111 (12)	78 (7)	69 (6)	69 (11)	41 (14)	-26 (15)
C(12)	5138 (9)	4260 (9)	7932 (7)	96 (12)	132 (10)	75 (7)	92 (14)	65 (15)	-17 (17)
C(13)	0045 (9)	3864 (8)	7699 (7)	103 (12)	93 (8)	66 (6)	-1 (12)	76 (15)	-4 (16)
C(14)	2233 (11)	6341 (9)	9454 (7)	138 (14)	114 (10)	73 (7)	72 (13)	30 (16)	- 20 (19)
C(15)	3302 (14)	7428 (9)	10267 (8)	259 (22)	90 (9)	74 (7)	18 (13)	65 (21)	- 56 (23)
C(16)	4992 (13)	7481 (9)	10306 (9)	212 (20)	101 (10)	118 (10)	83 (16)	37 (23)	-99 (23)
O(17)	5597 (12)	6477 (9)	9541 (8)	180 (17)	118 (10)	85 (7)	87 (14)	14 (19)	-130(21)
Õ(1)	7670 (15)	0123 (9)	3750 (10)	485 (30)	151 (10)	233 (13)	172 (19)	412 (35)	82 (28)
N(2)	8242 (11)	1835 (7)	3402 (7)	212 (16)	110 (9)	104 (7)	61 (13)	105 (18)	-18(19)
C(18)	8248 (15)	1243 (11)	4096 (10)	278 (24)	143 (12)	121 (10)	100 (19)	218 (28)	48 (28)
C(19)	8901 (21)	3172 (12)	3855 (12)	455 (40)	140 (14)	170 (15)	110 (23)	342 (43)	3 (37)
C(20)	7605 (20)	1127 (17)	2088 (17)	303 (31)	307 (26)	107 (11)	159 (28)	32 (31)	- 173 (46)

was $P\overline{1}$, and provided starting coordinates for Br, S(1) and S(2).

A Fourier synthesis, phased on these atoms in the usual way, immediately revealed the remainder of the molecular skeleton. A difference Fourier, subtracting out the NBID molecule was relatively featureless in the vicinity of the assumed atomic sites, but had in the asymmetric unit four peaks clustered together, and in positions suggestive of a molecule of dimethylformamide. Including one such molecule in the molecular weight per asymmetric unit, the discrepancy between the observed and calculated densities was eliminated (Table 1). After several cycles of refinement with an overall isotropic temperature factor, the reliability index for the photographically measured data remained above 30%, which was rather unsatisfactory, and it was decided to re-collect the data with a diffractometer, as described above. All subsequent discussion will refer to the diffractometer data.

Block-diagonal refinement with isotropic temperature factors led to a residual of 16% for the new data set. Introduction of anisotropic thermal parameters further reduced R to 9.3%. At this stage a difference Fourier map was calculated using the low-angle data $(\sin \theta/\lambda = 0.32 \text{ Å}^{-1})$ and revealed peaks at or near all the expected hydrogen positions with the exception of those associated with the dimethylformamide molecule, which apparently undergoes rather large thermal motion. The hydrogen atoms were placed at stereochemically reasonable positions, and included in the refinement with isotropic thermal factors. All atoms were then further refined to convergence, the final Rvalue for the reflections with $I > 2\sigma(I)$ being 8.5%. The weighting scheme was similar to that described by Stout & Jensen (1968) for diffractometer data. The final parameters for the non-hydrogen atoms are given

Table 3. Fractional hydrogen coordinates ($\times 10^3$) and thermal parameters (Å²)

	x	У	z	В
H(2)	143 (15)	014 (11)	244 (10)	1.9 (25)
H(3)	258 (14)	037 (10)	472 (10)	3.0 (25)
H(5)	541 (14)	346 (11)	527 (10)	4.5 (25)
H(6)	428 (14)	313 (10)	312 (9)	5.4 (23)
H(71)	486 (14)	131 (10)	655 (9)	5.0 (23)
H(72)	597 (14)	200 (10)	671 (9)	6.7 (23)
H(8)	189 (13)	214 (9)	657 (9)	0.0 (20)
H(12)	613 (13)	436 (10)	795 (9)	5.8 (21)
H(14)	112 (12)	630 (9)	932 (8)	3.4 (19)
H(15)	267 (13)	839 (10)	1075 (9)	3.1 (22)
H(16)	522 (15)	831 (11)	1053 (10)	8.5 (26)
H(17)	668 (15)	636 (10)	958 (10)	6.7 (25)
H(18)	837 (16)	163 (12)	470 (11)	4.0 (28)
H(191)	900 (19)	369 (14)	473 (13)	5.6 (35)
H(192)	952 (19)	330 (14)	330 (13)	14.1 (35)
H(193)	779 (18)	374 (13)	351 (13)	9.5 (35)
H(201)	691 (19)	168 (14)	157 (13)	13.7 (35)
H(202)	846 (19)	121 (14)	163 (13)	10.3 (36)
H(203)	678 (19)	100 (14)	183 (13)	4.9 (36)

Fig. 2. Molecular packing

N-(4-BROMOBENZYL)ISOQUINOLINIUM 4-DITHIOCARBOXYLATE

Table 4. Observed and calculated structure factors (\times 10)

н га Fu	4 80 86 20 1 80 100	- + +U +C	H FJ FL 7 548 -25	'H FO FC 2 568 44	H F3 F2	4 FU FU	H FU FC	M FJ FC 7 D4 -6	H FJ FC U 260 -265	H FO FC	M F3 FC
1 63 60	-7 155 177 -6 70 71 -7 75 -70	-6 171 -191 -7 08 -25 -5 338 -46 -3 08 62	-1 271 -248 -1 271 -248 -2 221 -205 -3 30* -33	0 0 4 -1 120 16 -2 30 22 -3 65 36	-7 99 -113 -8 108 176 -9 378 55	2 242 -323 3 64 -31 4 34 21 2 464 411	3 Km -80 0 KJ -83 1 10 33 2 370 31	8 193 -199 -1 310 -337 -2 522 -978 -3 209 8	0 264 -266 1 330 -368 2 229 -291 3 91 81	0 275 -272 -1 205 275 -2 709 667 -3 268 251	-1 84 -82 -2 241 -244 -3 217 -218
• 3•0 31• • 314 327 • 100 103	A+ A+ L+ 0 2 1+3 143	R* -2+ L* . 1	107 179 -5 09 -7 -6 78 -83	44 -11+ 1= 1	K+ -3, L+ 2 C +47 551	0 00° -0 0 12 -01 -1 200 01	3 530 32 40 -12, L0 2	-• 233 262 -5 142 169 -6 111 -98	• •1 •1 • 21• 27 • 125 -1•7	-6 404 -370 -5 511 -492 -6 160 -149	-5 320 -31 -6 50 -63 -7 109 -125
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 15, -176	2 1213 1302 1 430 342 2 99 -112	-9 310 -35	0 72 -42 1 30 7 2 76 76	1 335 379 2 42 20 3 364 -411	-3 143 -16V -6 160 -171 -5 240 -31	-1 0104 -2 57 60 -3 61 55	-8 6- 93 -9 139 99	-1 260 15 -2 250 275 -3 117 120	-8 67 66 -9 258 -7 -10 616 -43	-9 D0 42
1 323 -244	7 123 122 7 114 122 7 152 153	3 520 -513 - 0° -31 - 331 332 - 331 332	0 129 -97 1 117 -121	3 15+ -9 4 6+ -17 -1 57 -75 -2 43+ -1	4 282 -329 4 190 -158 6 103 128 7 78 60	-7 -7 -11	K= 0.L= 3	x= 4, L= 3	-+ 305 -324 -5 309 -323 -6 55 -41	x- 1. L- +	0 154 102 0 163 102
2 435 4412 3 41 -33 4 624 617 5 141 144	-2 (* -2) -3 % -67 -6 65 -67	7 174 191 d 30* -36 4 76 -67	3 183 183 4 145 150 5 182 193	-3 95 75 -4 00 47	8 54 -50 -1 139 -108 -2 180 -192	u u* 52 U s7 52	1 923 -4x0 2 150 -144 3 44 -5	2 110 -41 3 339 -336 • 220 -233	-1 63 67 K- 8, L- 3	1 403 -406 2 283 276 3 307 289	2 127 194 3 108 -211 4 213 -205
· J·	-5 408 U -5 U 17 -76	-1 57 -267 -2 526 -456 -3 40 -90 -4 253 220	6 63 -67 -6 430 -14 -7 500 50 -6 260 7	0 450 -35 0 00 -35	-3 32 10 -4 236 209 -5 206 215 -6 20 27		• of 61 • 1(• -99 • 1•• -150 7 27• -37	5 20° 2 6 78 v3 7 0° 36 U 156 154	0 44 -37 1 121 -137 2 160 -31	• 0• -31 5 •23 -••5 • 230 -199 7 2•• 53	5 126 141 6 170 178 7 494 56 8 34 -25
-1 436 403 -2 418 -1442 -3 133 -173	R1 V, L4 3	-5 136 111 -6 315 -247 -7 161 -161	K. 7. L. 1	1 170 - 41 2 30 39	-7 55 47 -8 72 100 -9 80 86	5 116 -134 6 348 -1. 7 34 32 -1 415 223	8 53* 70 0 75 110 -1 71 55 -2 414 - 30	-1 93 -75 -2 381 -381 -3 198 -191	3 05 54 6 20 -60 5 530 -55 6 460 -17	8 36° 39 0 730 -697 -1 567 -511	-1 123 136 -2 297 -336 -3 252 -277
-> 213 -15 -> 33 -55 -7 176 -4.5	2 1JC - 1C1 3 4-9 - 62 4 JP 43	-> 67 17 A- 3, 1- 1	1 7 32 2 455 -137 3 179 -175	-1 38* 7 -2 3* 16	K= +, L= 2 C 1+7 1+3	-2 217 234 -3 148 -209 -4 133 -144	-+ 571 -+34 -> 10+ -127	-5 97 103 -6 230 209 -7 106 -123	-1 66 -55 -2 72 95 -3 646 86	-3 385 350 -4 118 -112 -5 169 -174	-4 12 -14 -6 45 -32 -7 197 -193
	6 72 -61 0 67 -65 -1 101 -94) 704 -030 1 140 -14 2 708 003	5 510 44 6 60 -10 7 61 -73	K= 0, L= 2 0 495 -453	2 251 273 3 122 114 4 234 -244		-7 80 86 -6 57 74 -4 103 -113	·····	-5 100 -110 -5 5 -5 -5 -7 71 84	-7 C• 22 -8 51 21 -9 35• -32	
) +72 -471 1 347 -374 2 851 -647	-2 20* 11 -3 21 -63 -4 30* -30 -5 47* -15	3 d2 -28 • 256 -25• 5 221 -223 5 53 -7•	-1 +5 68 -2 101 -100 -3 127 -125	1 995 -937 2 514 -473 3 04 2 4 206 146	7 187 -183 A 26* 10 7 2* -37 8 3* 2	a= 0, L= 2 J 153 103	R= 1, L= 3	0 279 288 0 281 288 1 444 523	K3. L. 3 6 04 -17	-10 270 -17	C 277 286 1 56 47 2 139 -145
3 33 -22 • 24• 2 • 1•7 -13•	-N (* 13 K+ 10, L+ J	1 40° -41 1 63 87 7 709 -513	-5 474 73 -5 474 73 -0 524 61	5 45 -34 6 225 -240 7 235 -229	0 1+9 1+3 -1 605 -602 -2 37 -54	i 117 -110 2 54 -35 3 34 14	6 044 -010 1 625 -0C4 2 175 150 1 119 110	2 190 208 3 314 -01 4 297 -323 5 75 -102	0 10 -10	0 209 -208 0 206 -208 1 108 -79 2 248 11	3 62 -80 4 240 34 5 00 -17 6 00 13
7 28 -7	0 13* -18 1 55 -57 2 00 -72	-2 349 362 -3 380 253 -4 263 -242	-0 3+ 14 A+ -7, 1+ - 1	0 +97 -456 -1 60 -55 -2 680 619	-• 582 675 -5 79 93 -6 52 55	5 0° - 34 v 152 . 44 -1 35 - 44	• 132 129 5 30n - 315 • ••• -24	6 56 77 7 65 52 6 111 136	+ 77 8+ 5 61 30 4 11+ 15	3 474 492 4 216 205 5 61 37	0 277 286 -1 83 77 -2 166 -181
-1 49771 -1 424 822 -2 463 -105 -3 338 -398	· 1/* 24 • .* 35 5 5•* 20 1) 30* -14	-5 56 -30 -6 158 173 -7 142 232 -0 62 44	-1 215 208 -2 140 13 -3 380 -19	-3 104 -148 -4 356 -371 -5 44 -35 -6 203 227	-8 390 -24 9 470 27	-2 76 70 -3 41 -166 -4 42 22 -3 J# 14	4 00 -22 3 673 -910 -1 200 -141	-2 626 -685 -3 60 -84 -4 272 278	-1 12 85 -2 46 47 -3 115 -103	8 200 -211 7 606 -62 8 26 51 -1 661 600	-5 181 -181 -5 198 -26 -5 198 -217 -6 118 137
	-1 12 124 -2 94 91 	-+ 3+ -23 K= -3, L= 1	-4 52 33 -5 123 131 -5 205 213 -7 249 51	-7 57 51 -8 113 -121 -9 150 7	6 505 -555 6 503 -555	-7 -4- 27	-2 415 302 -3 527 511 -9 365 355 -5 141 -144	-5 30 10 -6 223 -225 -7 107 -163 -8 110 -95	-6 196 -206 -5 256 67 -6 72 61 -7 26 5	-2 412 386 -3 30 -4 -4 123 -114 -5 109 135	-7 45 110 -8 434 -49 Xe -5. Le 4
-d +00 25 -9 320 27	··· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ·· ··	(* 2+4 224 0 230 224 1 773 705	-8 30 -26	K= 1, L= 2	1 125 -129 2 222 244 3 42 101	u 3• -20 U 42 -20	-6 +5 -50 -7 +2+ -53 -4 +7	-9 249 -42 k= 5, 1+ 3	-6 72 -63 K- 34 L- 3	-6 251 25) -7 75 70 -8 17C -197	9 65 -88 C 79 -88
0 423 -460 1 305 -360	5 3m# 1 1 .# 5 2 n3 73	5 175 194 4 105 -187 5 124 -121	0 224 217 1 154 -163 2 89 -94	2 230 -34 3 146 135 4 241 230	5 117 -111 6 428 -48 7 55 36	2 210 -212 3 47 3J 4 73 73	K+ -1, L+ 3	0 233 249 1 163 150 2 216 -221	0 77 -87 1 370 -30 2 132 117	-10 00 -22 R0 2, L0 4	2 434 454 3 170 46 4 147 -173
2 144 127 3 647 663 9 96 115	3 63 71 0 0° 1 -1 65 -75 -2 0° 27	6 71 -27 7 24* 10 8 70 61 9 21* 25	3 46° 41 • 202 227 6 (* 3	5 04 d 6 43 96 7 244 -26 d 254 33	H 170 -25 -1 575 -602 -7 167 -165 -3 172 172	11 17 17 10 00 -13 10 17 17 10 17	3 96+ 980 3 961 886 1 396 - 37+ 2 -50 - 446	s 153 -162 • 05 84 5 144 140 6 14 5	3 92 90 9 63 29 9 83 -87 -1 39 -24	0 115 -116 1 335 311 2 145 144	5 00 -1 5 00 -15 7 00 25 -1 139 -179
• 354 -451 • 124 -177 • -21	-3 49# 53 -6 51# 25	-1 411 -714 4, 1- 1	-1 193 189 -2 61 60 -3 60 0	0 429 415 -1 962 934 -2 1019 968	-6 325 326 -5 200 35 -6 66 -35	-2 84 -22	3 110 6 6 437 439 5 344 362	7 74 -86 3 231 248 -1 81 95	-2 65 54 -3 131 121 -4 67 66	3 68 -74 6 155 -148 5 56 -20 6 118 121	-2 172 -221 -3 485 519 -4 407 453
0 42000 -1 154 155 -2 400 547		1 174 172 2 292 273 3 138 135	-7 340 41 -0 50 -1 -7 440 -24	-0 506 -507 -5 16 -137 -6 153 189	-# 274 -8 -9 484 41	-1 11 -11	7 6+ -67 3 32+ -33 -1 7.5 e65	-3 76 -61 -4 157 163 -3 116 121	-6 jo -96 4+ -96 Lo - 9	7 40+ 20 0 110 -116 -1 +1 26	-6 36* -32 -7 82 -99 -8 62 7*
-3 202 311 -9 204 231 -3 240 -1 -8 00 12	-1 3 -3	5 113 -95 5 340 -3 7 64 45	4+ -4, 1+ 1 (215 201	-8 103 116 -9 150 -10	U 475 474 L 95 136	5 57 -62 1 -63 -7	-1 +3° -437 32° -41 -> 77 -41	-7 56 -71 -4 53 -37	0 165 170 0 166 170 1 86 -9	-1 196 265 -4 158 115 -5 04 -12	** 6, 1* 4
-7 35 70 -8 38 34 -8 238 34	1 120 -21 2 520 -027 3 270 -230	3 65 -54 3 475 -325 -1 303 -257 -2 1r2 1r6	2 171 -184	3 403 446 3 454 476	3 13m -148 4 69 -77 5 110 135	2 117 114 4 37 40 3 73 40	-7 3 3	3 135 -154 3 135 -154	2 93 -07 3 00 -7 6 130 36 5 77 76	-7 85 -73 -8 158 176 -9 151 96	1 123 -110 2 111 -116 3 56 67
1 107 -115	- 05 177 5 200 250 0 92 75 7 100 1157	-3 075 432 -4 152 157 -3 121 -130	5 7, 45 5 7, 45 5 310 4 7 340 5	1 711 -076 2 517 -527 3 233 -235 4 162 162	+ 155 139 7 38 8 0 +21 404	-2 Lee 157 -3 65 76	-la 64 (a 84 24 64 3	1 223 226 2 127 135 3 61 63	62 13 -1 200 221 -2 105 120 -1 135 -160	42. L. 4 0 140 -131	6 65 56 5 95 83 6 204 -32 C 106 -109
2 835 544 5 241 201 • 70 15	d 145 -118 9 67 -53 -1 427 279	-1 344 40 -3 334 23 -4 44 31	-1 23 45 -2 155 -129 -3 52 -17	5 212 222 6 127 110 7 36 57	-2 101 -196 -3 61 -67 -6 78 78		0 37 -2 1 565 533 - 325 323	> 0° -10 > 161 125 7 28° 2°		0 136 -131 1 177 -182 2 611 -545	-1 170 160 -2 214 222 -3 91 44
5 271 -273 6 433 132 7 132 144 8 190 107	-3 94 63 -9 242 292 -5 359 22	x+ -++ [+ 1 0 345 -300	-5 230 1 -6 130 27 -7 370 -3	-1 7)3 745 -2 44 24 -3 365 -101	-A 237 -268 -7 56 -33 -8 00 66	y 252 271	162 -163 5 31 - 33 6 92 -57	-1 337 -370 -2 179 215 -3 457 506	K+ 10, L+ 3	4 43 53 5 46 57 6 10* 33	-5 4764 -6 2625 -7 47. 15
-1 uo -/; -2 264 302 -3 631 239	-7 -22 1 -4 11 11	2 305 -3nn 1 1no -171 2 52 47 3 170 -13	x 1 	-5 52 -56 -6 13: 13* -7 23* 33 -6 36* -2	x+ -5, 1+ 2 D 2+5 -377	2 25 -70 2 22 -9 3 22 -9 4 17	7 121 114 0 114 50 2 41 -2 -1 141 -175	-3 353 -354 -3 410 -422 -7 40 1	1 13* 37 2 50 57 0 3* -19	-1 1118 11C9 -2 -4 4 -27	-8 8 42
-+ 153 -172 -5 183 -210 -6 136 -125	x- 1, c- 1 0 465 -155 1 55 -15	• 100 -105 5 130 -141 6 0• 31 7 •3* -35	1 0* -12 2 23* -37 3 *** 37 4 *7* 35		n 294 -307 1 294 11 7 255 276 3 167 174	-1 cod zic -2 lol -147	-2 330 563 -3 156 167 -9 362 349 -3 51 -51	-1 200 10 X0 0. L0 3	-1 200 -8 -2 00 6 -3 160 16 -6 660 17	-5 344 -328 -4 539 -683 -5 210 232 -6 190 230	C 88 -98 0 87 -98 1 39 35 2 59 54
	2 144 157 3 546 472 4 322 248	-1 117 -104 -2 614 553	5 4c4 7 6 45 -83 -1 72 64	0 717 -073 1 12 -3 2 141 179	+ 97 -115 + +5 -57 5 +54 -36 7 119 1/9	-3 140 -134	-6 14 -51 -7 1.J 137 -6 50 56	3 333 350 1 104 152	** -1', 1* ¥	-7 152 159 -0 109 117 -9 66 60 -13 80 51	3 T4 -69 6 217 -248 5 102 -113 6 169 25
0 372	a 39 -30 T 55 -44 a 30 63	63 An 25 351 12- 117	-3 52 -42 -4 175 -141 -5 1, -44	• 234 141 5 26* -34 6 311 -313	6 45 47 -1 7 3 -2 77 -66	-7 -10 17	x+ -2, c+ s	3 107 -200 - 83 -24 5 74 84	1 3* 21 2 60 -47	4. 3. L. 4	7 43* 63 -1 305 -326 -2 117 -117
2 202 217	+ 121 115 3 45+ -353 -1 412 016 -2 1269 1094	-7 ja 9	-0 270 29 K+, L+ 1	A 65 44 C 719 -673 -1 127 -123	-0 200 -200 -3 200 -205 -6 208 -207	J 1J2 -1.5 4 33 -10 6 50 53	1 360 -242 1 360 -242 2 217 -232	-1 0J 03 -2 J+ 3	3 55 -41 4 364 -46 5 424 -44 -1 454 38	1 535 514 2 257 273 3 43 -79	32+ ++ 37+ 60 35+35+
5 0 ⁶ 5 7 13 ⁶ 3 ⁶ 8 71 54	-3 267 -344 -6 364 -363 -5 64 11	1 762 674 2 214 254 3 125 -126 6 271 -251	1 125 129 J 113 129 1 14 129 1 14 25 2 19 26	-2 140 -130 -3 417 195 -0 18 -73 -5 112 -111	-7 105 130 -8 430 27 -9 130 -33	3 74 03 J 143 -105 -1 57 -54 -2 30 -10	3 2.7 -2.7 • 1re -1ne • 11. 10.9 • 10. 1	-3 233 -253 1(4 -122 -5 -7 -35 -6 93 99	-2 112 -134 -3 101 -172 -4 37 64 -3 134 124	4 135 -147 5 474 57 6 56 48 7 72 42	-8 122 115 -9 131 140
-1 -73 -472 -2 -36 -36 -3 -247 - 32	-7 VI C. -4 VI - 134	5 152 -155 5 152 154 7 155 174 7 155 174	3 -10 -51 - 20 - 0 - 57 - 42 - 288 - 39	-6 32 -02 -7 410 -00 -6 -9 -55	x- 6, L- 7 3 199 144	-3 300 -2 -6 330 -13 -3 510 -27	7 300 -33 57 -54 57 -54	-7 33* 51 -3 62 -73	-0 08 61 411. L. 3	0 182 143 -1 335 -347 -2 320 -328 -3 77 77	1 178 -192
-5 120 135 -5 40 37 -7 162 -10)	ده -ا، ده ا ن به -هه) 203 131 -1 133 -303 -2 -30 -392	-1 235 -246 -2 134 -119 -3 115 -113	A+ -2. L+ 2	54 -78 3 138 -163 4 88 34	84-13, 14 2 D 244 -13	-1 93 -122 -4 45 -52 -5 340 100	3 217 21	U 83 77 U 61 77 1 474 56	-• 23• 239 -5 100 99 -6 60 90	2 10 63 3 115 125 6 66 66
-0 53 -30 At 5, Lt	2 20 -00 1 230 201 2 73 -14 3 340 -110	-3 134 -139 -4 155 145 -3 159 10 -0 259 21	-0 308 -07	2 220 241	7 50° 10 7 50° 10 9 187 189	2 140 -1 3 100 -1 3 300 -2	-1 v/ 92 -1 10 92 -1 10 -12	2 24 268 2 87 98 3 87 98 7 0° 27	1 04 -08 4 44 -15	-9 131 -133 -9 280 -69	0 40 -22 -1 147 145 -2 61 41
u 151 154 1 242 255 2 100 -50	• • • • • • • • • • • • • • • • • • •	-7 143 -143 -8 429 -8	<- 1:, 1. 1 0 134 -123 1 95 -100	3 23+ 33 4 32+ 26 5 210 255 6 74 79	-1 172 170 -2 315 -323 -3 185 -239 -4 80 -50	• 24• 22 • 0• 13 -1 0• 52 -2 55 -55	10 33* -61 K• 3, L• 3	5 165 -182 6 96 -103 7 310 28 -1 30 -30	-1 0* -14 -2 13* -123	0 530 557	-5 350 -35 -5 350 -50 -6 310 3
200 -301 3 - 3 - 21 3 - 3 - 41	+ 56 +43 + 72 50 -1 +73 429	0 554 -513	2 456 -8 5 30 46 6 30 13	7 230 -33 6 30 12 -1 233 -226	-9 186 210 -6 09 65 -7 90 -99	-3 123 134 -3 264 32 -3 45 / 47	0 361 292 1 76 -37 2 405 366	-2 +3 39 -3 244 271 -4 77 92	-3 310 -18 -9 310 21 -5 60 -3	1 0• 3 2 112 -108 3 399 -412 4 163 168	-7 0+ 5 K= -7, L+ 4
4 J0 -05 J 1-0 174 -1 V0 -05	-1 141 -426 -4 141 -15) -5 447 450	2 360 352 3 233 230 0 320 2	-1 •1• -3• -2 24• 13 -3 44• 47	-3 107 130 -4 305 355 -5 319 304	<6. L. 7	K+ 11+ L+ 2	5 41 -5- 6 - 31	-6 137 132 -1 43 93 -4 374 24	0 244 14	4 97 105 5 53 37 7 75 -98	0 284 -324 0 288 -324 1 90 -107
-2 222 -223 -3 330 37 -7 55 52 -8 510 23		0 105 - 200 7 0 105 - 00 7 0 10 10 7 0 10 10 7 0 10 10	-5 188 -12	-6 16* -20 -7 206 -207 -8 160 -167 -9 0* -36	0 271 -291 0 271 -291 1 271 -287 2 150 1+7	J (5 -24 1 23* -3 J 40* -78 -1 23* -27	-1 +76 -492 -1 +76 -492 -1 539 -479	-6 75 75 R. 7. L. 3	1 350 -18 2 82 69 3 00 34	-1 660 -745 -2 221 -292 -3 514 -603	3 202 223 4 91 82 5 355 -59
-• 112 -131 -7 1+2 1-1 -4 3• 35	R* 2.1* 1	-1 164 -171 -2 115 -1.2 -3 200 256	0 71 -77	8+ 1+ L+ 2 0 +12 1-	3 259 271 4 180 203 5 330 39	-2 3 32	-3 454 413 -4 43 53 -5 70 71 -6 574 -574	2 48 -112 1 170 -141 2 123 -123 5 167 180	K+ -12+ L+ 3 -1 31+ -30	-6 188 223 -5 177 216 -6 119 135 -7 167 -172	-1 373 -407 -2 222 230
ka 2, 1, ' 3. 13 224 1.31	1 1236 -1275	-> +u* -33 -> 229 -235 -7 35 44	2 260 42 3 330 -19 4 1.4 -68	1 135 -94 2 263 240 3 164 -153	7 121 -129 8 239 19 -1 324 319	1 42 1	-7 102 -119 -4 51 -39 -9 56 46	• 121 117 • 13• 11 • 53• -30	-2 57 -46 -3 524 18 -4 62 42	-8 205 -218 -9 626 -20 -10 199 21	-3 35° 24 -4 2° 65 -5 402 -416 -6 35° -15
1 223 231 2 200 - 4 3 74 - 63 - 53	4 215 272 5 274 14 5 196 -173 7 14 1	-8 470 -22 k= 6, L= 1	-1 949 -31 -2 154 14 -3 99 92	5 265 -242 6 188 192 7 135 114	-2 002 003 -3 102 196 -6 93 -79 -7 30 17	4 23° 21 2 3° 3° 3° 3 67 -40 4 14° -24	44 -34 L4 3 4 758 828	-1 103 151 -2 00 -4 -3 00 3	e- 1, j. 4 2 291 -292	· · · · · ·	-7 30 -51 -8 52 -57
5 06 36 6 200 31 7 00 -11 9 212 231	5 210 20 8 620 -7 9 1955 -109, -1 162 -167	1 133 117 2 103 -176 3 163 -176	-6 11 39 -5 64 -0	8 290 5 0 413 -396 -1 165 -174 -2 429 -346	-6 48 46 -7 ^6 -12 -8 J= -1	-1 190 -105 -2 288 -52 -3 48 -10 -5 58 52	D To2 A27 1 130 -130 2 205 -288 3 433 -053	-• 104 -101 -• 0• 30 -• 22• -11 -7 51• 30	1 949	2 102 -209 3 206 -303 6 87 -80	0 147 -147 1 117 -124
-1 33 -52 -2 246 -417 -3 62 -27	-2 1300 1241 -3 330 -7 -4 61 -147	5 106 103	u 20 4 1 10 22	-3 78 59 -4 254 257 -5 283 -304	K. 7, K. 2 7 61 -67	برز د- 4+ -، ۲, ۲+ ۲	• 3•• 2 5 92 106 5 69 69	K= -7, L= 3	5 91 92 6 479 -24 7 39 58	5 48 107 6 113 117 7 230 18	2 10 48 3 450 50 4 240 25

2942

Table 4 (cont.)

•

|--|--|--|--|--|--|--|--|

Table 4 (cont.)

		# 70 FC # 9	A F0 FC H F0 FC 0 30* 50 60 100 100 0 30* 50 60 100 100 1 120 -10 50 60 100 1 120 -10 50 60 100 1 120 -10 50 60 100 1 120 -10 50 60 100 1 120 -10 -10 50 70 1 120 -10 -10 50 70 1 120 -10 -10 50 70 1 10 10 -10 50 70 1 10 10 -10 50 70 1 10 10 -10 10 70 1 10 10 -10 10 70 1 10 10 10	# #0 50 # # 50 # # 50 # # 50 # # 50 # # 50 # # 50 # # 50 # # 50 # # 50 # # 50 # # 50 # # 50 # # # #<
1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

n Table 2, and for the hydrogen atoms in Table 3. The observed and calculated structure factors are given in Table 4. Atomic scattering factors were taken from *International Tables for X-ray Crystallography* (1962).

Discussion

The principal objective of this study was to determine the molecular structure of an adduct for which the available chemical data were equivocal. This objective was achieved, and the structure determination proved particularly worthwhile in that the result was different from that tentatively proposed at the outset, although fully consistent with chemical analyses carried out during and subsequent to the X-ray analysis (Baldwin & Duncan, 1971a, b).

The molecular packing is illustrated in Fig. 2 and the closer intermolecular contacts are listed in Table 5. The closest contact involving the dithiocarboxylate group is S(1)-C(12) (3.67 Å). This interaction might be weakly ionic, although there is clearly no direct ionic interaction between N(1) and the negatively charged group. Apart from an interaction with C(17) (3.78 Å) the closest approach of the bromine atom is 3.96 Å, being across a center of inversion to a symmetry-related atom. As is apparent in Fig. 2, the centrosymmetrically-related isoquinolinium rings overlap somewhat, and there are many mutual contacts ranging

2944

Table 5. Intermolecular contacts

All intermolecular contacts less than 3.75 Å are included. Roman numerals indicate molecules at the following symmetry-related positions:

[:(1 - x, 1 - x	-y, 1-z)	II: (1 -	-x, 1-y, 2-	-z); III:	$(\bar{x}, 1-y, 1)$	(-z)	•
-----	--------------	----------	----------	-------------	-----------	---------------------	------	---

NBID	-NBID	DMF-NBID			
S(1) - C(12)	III	3·78 Å	O(1) - N(1)	3∙64 Å	
S(1) - C(6)	III	3.48	O(1) - C(8)	3.20	
N(1) - C(15)	II	3.48	C(20) - C(15)	3.75	
N(1) - C(16)	II	3.41	C(20)-C(2)	3.66	
C(9) - C(16)	II	3.65	N(2) - C(2)	3.57	
C(9) - C(17)	II	3.54	O(1) - C(3)	3.37	
C(8) - C(16)	II	3.46	C(18) - C(5)	3.51	
C(12) - C(15)	II	3.32	C(18) - C(6)	3.69	
C(12) - C(14)	II	3.55	N(2) - C(6)	3.67	
C(12) - C(16)	II	3.66			
C(11) - C(16)	Π	3.69			
C(11) - C(11)	П	3.52			
C(11) - C(10)	II	3.61			
C(11) - C(14)	П	3.75			
C(11) - C(17)	Π	3.58			
C(10) - C(17)	П	3.38			
C(3) - C(7)	Ι	3.44			

upwards from 3.4 Å in this region of the molecule (Table 5). The close approaches involving the dimethyl-formamide molecule of crystallization are also listed in Table 5. The oxygen atom approaches within 3.25 Å of C(7), and within 3.20 Å of C(8), these being the two closest approaches noted for the whole structure.

The non-hydrogen bond lengths and angles for NBID and in the dimethylformamide molecule are illustrated in Fig. 3. Standard deviations in the bond lengths range from 0.011 to 0.018 Å except for the C-S and C-Br bonds which are 0.010 and 0.008 Å. For the angles, the standard deviations range from 0.6 to 1.0° except in the dimethylformamide molecule, where they range from 1.1 to 1.3° . The bond lengths involving hydrogen atoms are listed in Table 6.

Table 6. Bond lengths involving hydrogen atoms

C(2)—H(2)	0·88 (12) Å	C(16)-H(16)	0·85 (13) Å
C(3) - H(3)	1.08(12)	C(17)-H(17)	0.90 (13)
C(5) = H(5) C(6) = H(6)	1.01(12)	C(18)-H(18)	0.70 (12)
C(7) - H(71)	0.88 (11)	C(19)-H(191)	1.01 (15)
C(7) - H(72)	0.88 (12)	C(19)-H(192)	1.08 (16)
C(8) - H(8)	1.04 (11)	C(19)–H(193)	1.11 (16)
C(12)-H(12)	0.84 (12)	C(20) - H(201)	1.05 (16)
C(14) - H(14)	0.89 (11)	C(20)-H(202)	1.12 (17)
C(15)-H(15)	1.17 (11)	C(20)-H(203)	0.66 (17)

None of the interatomic distances appears to depart significantly from expected values (*International Tables for X-ray Crystallography*, 1962, Vol. III, p. 275). One of the more interesting features of the structure determination is the dithiocarboxylate group (III) for which we have not been able to find a strictly comparable example in the crystallographic literature. The observed C-S bond lengths in NBID, 1.693 (10) and 1.649 (10) Å, are probably not significantly different, and have an average value of 1.671 Å which, according

to the carbon-sulphur bond length vs bond order plot of Abrahams (1956), corresponds to a double-bond character of 70%.

A comparison can be made between this carbonsulphur bond length and those observed in a number of crystal structures in which the xanthate group is complexed to a variety of metals, as indicated by (IV). In cadmium ethylxanthate (limura, Ito & Hagihara, 1972) two xanthate groups complex the cadmium in a distorted tetrahedral arrangement, and the four independent C-S bonds are all essentially equal, ranging from 1.685 to 1.691 Å. In cobalt(III) ethylxanthate (Merlino, 1969) there is approximate octahedral coordination with the C-S bond lengths observed to be 1.674 and 1.671 Å, essentially similar to those in the cadmium complex and in NBID. In other xanthate complexes, e.g., with lead (Hagihara, Watanabe & Yamashita, 1968), the metal-sulphur distances are significantly different, as are the carbon-sulphur bonds, so that a direct comparison with NBID cannot be made.

One may also compare the C-S bond lengths with those observed in dithiocarbamates (V). For example in the square planar nickel complex of diethyldithiocarbamate (Bonamico, Dessy, Mariani, Vaciago & Zambonelli, 1965) the two C-S bonds are 1.700 and 1.713 Å, and in hydrazinium hydrazinedithiocarboxylate, (Braibanti, Manotti Lanfredi, Tiripicchio & Logiudice, 1969) in which the dithiocarbamato anion participates in hydrogen bonding, rather than metal chelation, the C-S bond lengths are 1.695 and 1.723 Å, indicating slightly less double-bond character than for the dithiocarboxylate group in NBID.

On the other hand the C-S bond in the thioamido group (VI) of 2-thiamidopyridine and in 4-thiamidopyridine (Downie, Harrison, Raper & Hepworth, 1972) are both shorter (1.657 and 1.65 Å), reflecting higher double-bond character.

The equation of the best-fit least-squares plane through the isoquinolinium nucleus is

$$-0.0060X + 0.7287Y - 0.6848Z = -5.311$$
 Å

while that through the four atoms of the dithiocarboxylate side chain is

0.1268X - 0.4127Y - 0.9020Z = -7.300 Å.

The equations of these planes are given for coordinates measured in Å relative to an orthogonal coordinate frame with the X axis parallel to \mathbf{a} , and the Z axis parallel to \mathbf{c}^* .

A χ^2 test shows that the isoquinolinium ring system is significantly non-planar. The departures from planarity, which are relatively small (Table 7), and presumably due to crystal packing forces, appear to be due primarily to the formation of a shallow dihedral angle between the two rings, along the line joining C(10) and C(11). The dithiocarboxylate side chain is planar within experimental error, and makes an angle of 71.6° with the isoquinolinium plane. Takano, Sasada & Kakudo (1966) have suggested that noncoplanarity is due to steric hindrance between sidechain atoms, and ring atoms ortho to the side chain, and that it is the van der Waals approach distance which defines the non-planarity angle. As the dithiocarboxylate group in NBID tends toward a coplanar configuration, impossibly short non-bonded interactions occur between one of the sulphur atoms and C(14). However it is not these contacts which are the closest ones in the crystal structure. Rather, the closest non-bonded approaches made by the sulphur atoms [excluding C(9)] are S(1)–C(10) (3.380 Å) and S(2)–C(8) (3.273 Å). The distances from C(14) are 3.449 Å for S(1) and 3.695 Å for S(2), and from H(14) are 2.86 Å for S(1) and 3.77 Å for S(2). The expected carbon-sulphur van der Waals distance is 3.35 Å (C=1.50; S = 1.85 Å), although shorter approaches (2.96 and 3.15 Å) have been observed in 4- and 2-thioamidopyridine (Colleter & Gadret, 1967; Downie et al., 1972).

Table 7.	Deviations	from pl	lanarity
----------	-------------------	---------	----------

Isoquino	olinium nucleus	Bromobenzyl ring				
N(1)	−0·011 (7) Å	C(1)	0·009 (10) Å			
C(8)	-0.027(8)	C(2)	-0.003(11)			
C(9)	0.006 (8)	C(3)	-0.006 (11)			
C(10)	0.032 (8)	C(4)	0.005 (9)			
C(11)	0.033 (8)	C(5)	0.002(11)			
C(12)	0.008 (10)	C(6)	-0.011(11)			
C(14)	0.004 (10)	C(7)*	0.083(10)			
C(15)	-0·031 (10)	Br*	0.042(1)			
C(16)	-0·040 (11)					
C(17)	0.000 (10)	Dimet	hylformamide			
C(7)*	-0.062(10)	O(1)	0.007 (14)			
C(13)*	-0.024(9)	N(2)	0.008(10)			
		C(18)	-0.020(14)			
Dithioca	rboxylate group	C(19)	0.010(20)			
C(9)	-0.001(13)	C(20)	-0.015(19)			
C(13)	0.004 (8)		. ,			
S(1)	0.000 (3)					
S(2)	0.000(3)					

* These atoms were not included in the calculation of the best-fit plane.

The best-fit least-squares plane through the bromobenzyl ring is

$$0.7890X - 0.5898Y - 0.1723Z = 0.207$$
 Å

and through the dimethylformamide molecule

$$-0.9200X + 0.3911Y - 0.0235Z = 2.697$$
Å.

In neither case is there significant departure from planarity (Table 7). These two planes are only 17.3° from parallel, and as may be visualized in Fig. 2, the dimethylformamide molecules are interleaved between successive bromobenzyl rings related by translation along the *a* axis. The dihedral angle between the bromobenzyl and the isoquinolinium planes is 108.5° .

We thank Messrs R. E. Stenkamp and P. S. F. Lo for their assistance, and Drs F. R. Ahmed and S. F. Watkins for computer programs.

This work was supported in part by grants from the National Science Foundation (GB30823X) and the National Institutes of Health (GM 15423) and by the award to B. W. M. of an Alfred P. Sloan Research Fellowship and a Public Health Service Career Development Award (GM 70585) from the Institute of General Medical Sciences.

Fig. 3. Bond lengths and angles.

2946

References

ABRAHAMS, S. C. (1956). Quart. Rev. 10, 412.

- BALDWIN, J. E. & DUNCAN, J. A. (1971a). J. Org. Chem. 36, 627-631.
- BALDWIN, J. E. & DUNCAN, J. A. (1971b). J. Org. Chem. 36, 3156-3159.
- BALDWIN, J. E., MCDANIEL, M. C., NEWTON, M. G. & PAUL, I. C. (1966). *Tetrahedron Lett*. pp. 4239–4241.
- BONAMICO, M., DESSY, G., MARIANI, C., VACIAGO, A. & ZAMBONELLI, L. (1965). *Acta Cryst.* **19**, 619–626.
- BRAIBANTI, A., MANOTTI LANFREDI, A. M., TIRIPICCHIO, A. & LOGIUDICE, F. (1969). Acta Cryst. B25, 93–99.
- COLLETER, J. C. & GADRET, M. (1967). Bull. Soc. Chim. France, 9, 3463–3469.
- DOWNIE, T. C., HARRISON, W., RAPER, E. S. & HEPWORTH, M. A. (1972). *Acta Cryst.* B28, 283–290.

- HAGIHARA, H., WATANABE, Y. & YAMASHITA, S. (1968). Acta Cryst. B24, 960-966.
- IIMURA, Y., ITO, T. & HAGIHARA, H. (1972). Acta Cryst. B28, 2271–2279.
- International Tables for X-ray Crystallography (1962). Vol. III, pp. 201–209. Birmingham: Kynoch Press.
- KRÖHNKE, F. & STEUERNAGEL, H. H. (1961). Angew. Chem. 73, 26.
- MERLINO, S. (1969). Acta Cryst. B25, 2270-2276.
- NEWTON, M. G., MCDANIEL, M. C., BALDWIN, J. E. & PAUL, I. C. (1967). J. Chem. Soc. (B), pp. 1117-1121.
- SIM, G. A. (1958). Acta Cryst. 11, 123.-124.
- STOUT, G. H. & JENSEN, L. H. (1968). X-ray Structure Determination, A Practical Guide, p. 456. New York: Macmillan.
- TAKANO, T., SASADA, Y. & KAKUDO, M. (1966). Acta Cryst. 21, 514–522.

Acta Cryst. (1973). B29, 2947

The Crystal and Molecular Structure of Bacogenin-A₁ Dibromoacetate

BY K. KAWAI, Y. IITAKA AND S. SHIBATA

Faculty of Pharmaceutical Sciences, University of Tokyo, Hongo, Tokyo, Japan

AND D.K. KULSHRESHTHA AND R.P. RASTOGI Central Drug Research Institute, Lucknow, India

(Received 4 May 1973; accepted 26 June 1973)

The crystal structure of bacogenin-A₁ dibromoacetate, $C_{34}H_{50}O_6Br_2$, has been determined in order to elucidate the molecular structure and absolute configuration of bacogenin-A₁, $C_{30}H_{48}O_4$, a triterpenoid sapogenin isolated from *Bacopa monniera*. The crystals are orthorhombic with space group $P_{2_12_12_1}$ and the unit-cell dimensions are $a=13\cdot36$, $b=36\cdot24$, $c=7\cdot15$ Å, Z=4. The crystal structure was solved by the heavy-atom method and refined by the block-matrix least-squares method including anisotropic thermal parameters. The final *R* value for 1288 observed structure factors was 0.084. The absolute configuration was determined by the use of the anomalous dispersion of bromine atoms for Mo K α radiation. The molecular structure of bacogenin-A₁ was determined to be a partially modified dammarane-type triterpene.

Introduction

Bacogenin-A₁, $C_{30}H_{48}O_4$, is one of the sapogenins obtained on acid hydrolysis of bacoside A which was isolated from an Indian plant, *Bacopa monniera* (Kulshreshtha & Rastogi, 1973). On the basis of the chemical and spectroscopic data, bacogenin-A₁ was shown to be a tetracyclic triterpene having a chemical structure formulated as (I) (Fig. 1). However, an alternative formula having a methyl at C(24) could not be ruled out.

Therefore, an X-ray structure analysis of bacogenin- A_1 dibromoacetate (II) (Fig. 1), has been undertaken in order to establish the chemical structure of bacogenin- A_1 including its absolute configuration.

Experimental

Bacogenin- A_1 was treated with bromoacetyl bromide in chloroform containing a few drops of pyridine to give bacogenin- A_1 dibromoacetate. The product was recrystallized from MeOH to obtain colourless prisms

